

Agenda
 Introduction and Background Failure Modes Three Techniques i. Category I Walls (Excavate/Replace) ii. Grouting and "Composite Walls"
 iii. Category II Walls (Mix-in-Place) 2. Category I Walls (Excavate/Replace) 3. Grouting and "Composite Walls" 4. Category II Walls (Mix-in-Place) 5. Final Remarks

1. Introduction and Background

Large number of major dam safety incidents involving complex seepage/piping failure mode development processes

Large number of other dams in similar environments with similar design and construction provisions

Clearwater Dam, MO – Sinkhole January 15, 2003

Typical Well-Known Examples

	Name of Dam	Date(s) of Incidents	Comments
Wol	f Creek Dam, KY	1960's	Increasing seepage, sinkholes along downstream toe of dam, muddy show
Cen	ter Hill Dam, TN	1969 - 1983	Increasing seepage, sinkholes along downstream toe of dam, muddy show.
Qua	il Creek Dam, UT	1980′s	Increasing seepage, toe drain failure, dam failure.
Mos	ul Dam, Iraq	1970's to present	Sinkholes along downstream toe, abutments and increasing seepage
Clea	arwater Dam, MO	Jan 2003	Increasing seepage, sinkhole on Upstream face of dam.
Hor	setooth Dam, CO	Early 2000's	Sinkholes along upstream toe of dam and increasing seepage
Ara	puni Dam, NZ	1927 to 1995	Increasing seepage

Numerous other case histories exist

Geologic Characteristics of Karst, Erodible and Soluble Foundations

connection to base of dam

Stratagraphically controlled Karst with no connection to base of dam

gpm under low head

Design Features Leading to Development of Safety Incidents/Failures

- Inadequate treatment of foundation defects
- Incomplete or inadequate grout curtains and/or cutoffs
- Inadequate embankment filter/drainage provisions

Caves along cutoff trench – Wolf Creek Dam

Key Factors in Assessing Risk Profile

Site geology

Design Features

- Depth of foundation treatment
- Interface treatment
- Embankment provisions

Depth of reservoir

Time since first filling

Erodibility of Karst or open joint infilling materials Solubility and reservoir water chemistry

All these factors must be considered when assessing the risk profile and potential risk of future failure mode development. Current performance may not be an indicator of future safety. Solution and erosion processes are dynamic.

HYDROMILL TECHNOLOGY

The core of any Hydromill is its trenching/cutting unit, that schematically consists of a heavy steel frame integrating the following components:

- swivel located on top of the frame
- two independent hydraulic engines which allows the rotation of a pair of milling drums located at the bottom of the frame;
- a mud suction pump placed just above the milling wheels;
- front and side hydraulicallyoperated "steering" flaps;
- a number of built-in sensors and inclinometers.

DAM NAME AND YEAR OF REMEDIATION	CONTRACTOR	Type of Wall	COMPOSITION OF WALL	GROUND CONDITIONS	PURPOSE OF WALL	SCOPE OF PROJECT				Descention
						AREA	MIN. WIDTH	DEPTH	LENGTH	REFERENCES
1. WOLF CREEK, KY, 1975-1979	ICOS	24-inch diameter Primary Piles, joined by 24- inch wide clamshell panets. Two phases of work.	Concrete.	Dam FILL, and ALLUVIUM over argilaceous and karstic LIMESTONE with cavilies. often clay- filled.	To provide a "Positive concrete cul- off" through dam and into bedrock to stop seepage. progressively developing in the karst.	270,000 sf (Phase 1) plus 261,000 sf (Phase 2)	24 in	Max. 280 ft	2,000 ft plus 1,250 ft	 ICOS brochures (undated) Fetzer (1988)
2. W.F. GEORGE, AL 1961 1983-1985	Soletanche (Phase 1) Bencor- Petrifond (Phase 2)	26-Inch thick panels using cable and kelly- mounted clamshell 24-Inch panels 15-27 ft long	Plastic concrete 3,000 psi Concrete	Random. impervious FILL with silty core over 25- 30 ft ALLUVIUM over chalky LIMESTONE	To provide a "positive concrete cut- off" through the dam and alluvials.	130,000 sf (Phase 1) plus 951,000 sf (Phase 2)	26 in 24 in	Max 138 ft 110-190 ft	Approx. 1,000 ft 8,000 ft	Soletanche Brochure (undated) Bencor Brochure (undated)
3. ADDICKS AND BARKER, TX. Completed in 1982 (Phase 1 took 5 months)	Soletanche*	36-inch thick panel wall with clamshell excavation using Kelly.	Soil- Bentonite.	Dam FILL over CLAY.	To prevent seepage and piping through core.	450,000 sf (Phase 1) plus 730,000 sf (Phase 2)	36 in	Max 66 ft typically 35 to 52 ft	8,330 ft plus 12,900 ft	Soletanche website.
4. ST. STEPHENS, SC. 1984	Soletanche	24-inch-thick concrete panel wall, installed by Hydromill, Plus upstream joint protection by soli- bentonite panels,	Concrete and soli- bentonite.	Dam FILL, over sandy marly SHALE.	To provide a cul-off through dam.	78,600 sf (concrete) plus 28,000 sf (soil- bentonite)	24 in	Max. 120 ft including 3 ft into shale	695 n	USACE Report (198- Soletanche (various) Parkinson (1986) Bruce et al. (1989)

ated in the U.S. under different business identities over the years. "Soletanche" is used herein as the general term

Concrete Cut-Offs for Existing Embankment Dams

TYPE OF CONSTRUCTION	NUMBER	Square Footage			
TYPE OF CONSTRUCTION	OF PROJECTS	SMALLEST	LARGEST	Total	
Mainly Clamshell	7	51,000	1,400,000	3,986,320	
Mainly Hydromill	9	104,600	850,000	2,389,415	
Mainly Secant Piles	4	12,000	531,000	1,050,700	
Total	20			7,426,435	

2006-2013 Update				
ДАМ	STATE	SCOPE	STATUS OF PROJECT AS OF FALL 2013	
Wolf Creek	KY	Approximately \$400M Category 1 cutoff to 275' depth.	Complete.	
Clearwater	МО	Approximately \$100M Category 1 cutoff to 150' depth.	Complete.	
Center Hill	TN	Approximately \$110M Category 1 cutoff to 300' depth.	30% complete.	
Herbert Hoover Dike	FL	About 22 miles of Category 1 and 2 cutoff to 90' depth.	Complete.	

In addition, major cutoff walls are in design stage for other USACE DSAC 1 and 2 dams including East Branch, Bolivar, Mohawk and Addicks & Barker Dams.

Revolutionary Elements 1996-Present

- Quantitative Design
 - Intensity of Grouting consistent with design, assumptions and requirements.
- Hole Orientation and Depth selected consistent with site geology.
- Stable Grouts with multiple admixtures.
- Pressures Maximum safe pressure utilized.
- Data Acquisition Flowmeters and Pressure Transducers.
- Data Recording Computer Monitoring by experienced Engineer or Geologist.
- Note: talk focuses on cutoffs as opposed to blanket ("consolidation") grouting. However, the same procedural principles apply.

Characteristics of Unstable Water Cement Grouts

- Cement + Water
- Considerable Bleed Potential
- Low Resistance to Pressure Filtration
- Unorganized Particles
- Unpredictable Behavior due to Changing Rheology During Injection
- Marginal Durability

Common Additives to Balanced Stable Cement-Based Suspension Grouts

- Water
- Portland Cement (typically Type III)
- Bentonite
- Silica Fume
- Flyash (usually Type F)
- Welan Gum or other Viscosity Modifier
- Dispersant (SuperP)

"Composite" Cut-Off Solution for Carbonate Foundations

Basic Principles

 Modern grouting methodologies can be relied upon to provide durable, effective cut-offs, provided significant fine material (e.g., fine karstic detritus) is not retained in the grout/rock structure comprising the cut-off.

Basic Premise

Conduct high quality drilling and grouting operation along the whole alignment as the first, engineered step, not as an intermittent and/or emergency operation.

This operation will:

- 1. Provide a very high intensity of site investigation data upon which to optimize the depth and extent of the subsequent concrete cut-off wall.
- 2. Pretreat the epikarst and other voided areas to prevent massive, sudden loss of bentonite slurry during the excavation for the concrete cut-off. (Potentially a dam safety issue.)
- 3. Provide a cut-off in "clean" rock conditions, of an engineered residual permeability.

Build cut-off wall only where required.

Cutter Soil Mixing (CSM)

In 2004 Bauer developed a new method to carry out Deep Soil Mixing. The method is based on the use of diaphragm wall cutters mounted to a special frame that is driven into the ground by a Kelly bar to produce rectangular panels of treated soil.

5. Final Remarks

 Large number of major dam safety incidents involving complex seepage/piping failure mode development processes.

- Timescales of different processes are highly variable
 - Solutioning of carbonates millions of years
 - Solutioning of evaporites < decade
 - Erosion of infilling in karst < 1 engineer lifetime
- Potentially hundreds of existing "safe" dams may become unsafe in our lifetime.
- Goal of intervention/remediation is to create low (tolerable) risk profile.
- Since 1975 proven specialty construction technologies exist in North America to achieve this goal.

